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Synopsis 

The weight-average molecular weight is estimated by an extrapolation technique based on 
a linear relation between the viscosity-average molecular weight M, and a Mark-Houwink- 
Sakurada constant. This method may also be used to assess the unperturbed dimensions of 
polymers. If the M, data are known with high accuracy, then the straight line may be stretched 
to reach the number-average molecular weight confidently. The slope of the linear plot is 
associated with the molecular weight distribution and as such can be utilized to compute the 
polydispersity index. 

Numerous methods have been developed for the molecular-weight deter- 
mination of polymers.' Among them, the solution-viscosity method is per- 
haps the simpliest and most widely used one for the polymer 
characterization by far. This procedure measures the intrinsic viscosity [q] 
of a polymer in a given solvent at a constant temperature. The viscosity- 
average molecular weight Mu is related to [q] by the well-known Mark- 
Houwink-Sakurada equation given as 

where K and a are the empirical constants which depend solely upon the 
polymer-solvent combination. These constants are invariant with Mu and 
molecular weight distribution provided that the Mu is sufficiently high.2 It 
has been shown that the values of constant a vary from 0.5 to 0.8, depending 
on the goodness of the solvent for flexible random polymers. Moreover, the 
viscosity-average and weight-average (M,) molecular weights are defined 
as 

Mu = Zw,M: (2) 

M ,  = ZWN, (3) 

( i  )va 
I 

where wi is the weight fraction of the polymeric species with molecular 
weight M,. This infers that the value of M, approaches that of M, in the 
good solvents when the values of a are close to unity. In the limit of a = 
1, the two values merge theoretically. Also, Mu is equal to the number- 
average molecular weight M, at a = -1. The objective of this note is to 
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advance a method to estimate M, and M, from the Mu data based on the 
foregoing observations. 

Taylor series expansion of eq. (2) about a = 1 results in 

Mu = M, + S(U - 1) + T(u - 1)2 + * (4) 

where 

S = zwiMi In Mi - M, In M, 

T = M, In M, - (1 + In M,)Zw&Zi In Mi 

(4a) 

(4b) 

i 

I 

M,(ln M,)2 + CwiMi(ln Mi)2 
i 

However, eq. (4) can be simplified to a linear form if the second and higher 
power terms in (a - 1) are vanishingly small, i.e., 

Mu = M, + S(a - 1) (5) 

Hence a plot of Mu vs. (a  - 1) produces a straight line whose intercept and 
slope yield M, and S, respectively. Table I demonstrates the results obtained 
by the linear least-squares treatment of eq. (5) for various molecular weight 
distribution f~nct ions .~ .~  A total of 14 systems is investigated herein. These 
systems are characterized by the true values of M, and V, which is the 

TABLE I 
Results of M ,  Obtained by Eq. (5) for Various Theoretical Models 

Model NO. M, x 1 0 - 5 8  

Schultz 1 3.000 
2 3.000 
3 3.000 
4 3.000 
5 3.000 
6 30.00 

Tung 7 3.000 
8 3.000 

Flory 9 3.000 

Log-normal 11 3.000 
10 30.00 

12 3.000 
13 3.000 

Multi 14 6.150 

nentd 
compo- 

U 

1.10 
1.50 
3.00 

20.0 
50.0 
3.00 
3.00 

2.00 
2.00 
3.00 

50.0 

20.0 
50.0 
4.92 

M, x S x rc SIM, 

3.000 0.135 1.oooO 0.045 
3.001 0.479 1.0000 0.160 
3.002 0.910 1.0000 0.303 
2.998 1.236 0.9999 0.412 
3.001 1.269 1.oooO 0.423 

30.02 9.100 1.0000 0.303 
3.001 0.779 0.9998 0.260 
2.998 1.225 0.9987 0.408 
3.001 0.700 1.OOOO 0.233 

30.01 7.000 1.oooO 0.233 
2.972 1.400 0.9995 0.467 
2.961 1.610 0.9993 0.537 
2.733 3.334 0.9934 1.111 
6.100 2.038 0.9974 0.331 

a True value of M,. 

c Linear correlation coefficient. 
Estimated value of M ,  by eq. (5). 

A threecomponent Schultz model with weight fractions g, = 0.70, g, = 0.25, and g, = 
0.05 for fractions characterized, respectively, by M, = 3.0 x 105, U = 3.0; M ,  = 12.0 x 106, 
U = 6.0; and M, = 21.0 x lo5, U = 21.0. 
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polydispersity index defined as the ratio of M, and M,,. The validity of this 
linear relationship is substantiated by the values of linear correlation coef- 
ficient r listed in Table I. Evidently, the estimated values of M, become 
more precise if the polymer samples are less polydisperse. It is discovered 
that the discrepancies between the true and predicted M, values are not 
exceeding 1% for a large variety of hypothetical polymers covering prac- 
tically all possible molecular weight distributions. A multicomponent mod- 
el5 was also studied in system 14. However, the log-normal model seems to 
manifest larger differences between the two M, values as encountered in 
systems 12 and 13. This means that the truncation error in eq. (5) is po- 
sitively noticeable in these cases. Nevertheless, in practice, the polydis- 
persity index of a polymer sample is rarely over 20 unless the polymer is 
highly branched or crossedlinked. Hence eq. (5) is warrantable in most 
instances. 

0 t h  and Desreux6 have measured the intrinsic viscosities of a polystyrene 
sample (EF Brut) in the toluene-methanol, butanol-methanol, and chlo- 
roform-methanol mixed solvents at 25°C. Figure 1 displays a linear plot of 
eq. (5) for this particular sample. The independency of the parameter S 
upon the nature of the solvents as inferred from eq. (4a) allows the Mu data 
from the three different sets of mixed solvents to be combined herein. Least- 
squares fitting of the data reveals that M, = (1.53 * 0.03) x lo6, S = (3.56 * 0.90) x lo5, and r = 0.8211. In this computation, the data points 1, 2, 
and 3, which are rather scattered and doubtful, have been neglected alto- 
gether. Our M, figure agrees remarkably well with the light scattering 
result equal to 1.55 x lo6. Rudin et aL7 have also employed the same set 
of data to estimate M,. By plotting Mu vs. a for the three polymer-solvent 

I '  

( a - 1 )  
Fig. 1. Linear plot of M, vs. (a - 1) for a polystyrene sample in various mixed solvents. 
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pairs separately, they reported an average value of Mw = 1.642 x lo6. The 
two extrapolation methods are indeed different in that the present proce- 
dure involves a larger population size for analysis and thus gives rise to a 
more accurate and reliable result as shown in this particular case. 

Table I shows that the value of ratio S/Mw increases, with increasing 
degree of heterogeneity measured by the parameter U. That is to say, this 
particular quantity is a good indication of the polydispersity of a polymer 
sample. In fact, using the Schultz molecular weight distribution function, 
it can be proved that the ratio 

S 
- = +(b + 2) - ln(b + 2) 
M W  

where @(XI is the digamma function of x and 

u- 2 b = -  l - u  

(6) 

For the sample EF Brut, eq. (6) gives U = 1.91, which is approximated to 
the most probable distribution. 

Equation (5) may be used to predict the Mu under the theta condition 
from the viscometric data of good solvents. This would permit the unper- 
turbed dimension of a polymel.8 to be evaluated with whole polymers instead 
of using sharp polymer fractions. 

The attempt to extend the method to the lower moment of molecular 
weight distribution, viz., M,,, has met with some promising results. Applying 
eq. (5)  to a hypothetical Schultz’s sample with Mw = 3 x lo5 and U = 3 
has yielded Mw = 2.997 X lo5, S = 9.585 x lo4, and r = 0.9986 for a values 
varying from -1 to 2. The estimated M,, is therefore equal to 1.08 x lo5, 
which is only 8% higher than the actual value. This justifies the use of eq. 
(5) for estimating M, as well if the Mu data are adequately precise and the 
polymer samples are not too polydisperse. Likewise, the M,, of the above 
polystyrene sample is found to be 8.21 x lo5. Accordingly it gives U = 1.88 
which is consistent with the value obtained from eq. (6). 

Apparently, the success of this extrapolation technique rests on the ac- 
curacy of the Mu data which are computed from the values of [q] via eq. 
(1). The [q] is in turn conventionally determined by the Huggin’s equation 
which depicts the relative viscosity of dilute polymer solution as a function 
of its concentration. Roseng has illustrated that the uncertainties in [q] 
determination leads to considerable errors in Mu. The major [q] uncertain- 
ties are primarily due to the inaccuracy in monitoring the efflux time of 
the solution as well as the inherent alogrithm errors pertaining to the linear 
least-squares treatment of the Huggin’s equation. Whereas the former may 
be overcome by viscometers equiped with automatic viscosity timer, the 
latter is ratified by some rigorous numerical analyses as proposed by Reilly 
et al.1° and Nagy and co-workers.ll Perhaps the error-in-variable method 
which has been successfully employed to estimate the monomer reactivity 
ratios of copolymerizations12 recently may also be adopted to enhance the 
precision of [q] determination. Since it is vital to know a spectrum of solvents 
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covering a wide range of a values, we believe that mixing of good and poor 
solvents would be most appropriate for the present method. 

In this work, we have also used eq. (4) to estimate M ,  The results are 
parallel to those from eq. (5)  particularly for narrow molecular weight 
distributions. However, in reality the experimental data may fit to eq. (4) 
better than to its linear version particularly when the magnitude of the 
(a - U2 term is comparable to the uncertainty in Mu. Consequently, the 
extrapolation of the quadratic form will be less precise or erroneous, because 
the truly rectilinear relation between Mu and (a - 1) over a limited range 
of (a -1) is forced to a curvilinear form. For instance, the polystyrene 
sample cited above quotes M, = 1.64 x lo5 from eq. (4), which is less 
accurate than the estimate by eq. (5). Hence it is obvious that eq. (5) is 
superior to eq. (4) in estimating M, and M, for linear flexible random 
polymers. 
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